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Abstract

Metalation/trapping sequences applied to relatively inert,tert-alkyl substituted arenes tend to give poor yields
unless the reagent is used in high concentrations. Under optimized conditions, even 1,4-bis(tert-butyl)benzene,
1,1,3,3-tetramethylindane and 1,1,2,2,3,3-hexamethylindane can be smoothly converted into derivatives. Compe-
tition experiments enable the quantitative assessment oftert-alkyl substituent effects on the metalation rates at
aromaticortho, metaand para positions. Unlike alkyl groups, hetero elements generally accelerate metalation
reactions. 1,1,3,3-Tetramethyl-1,3-dihydroisobenzofuran undergoes the hydrogen/metal exchange 3–6 times faster
than the indanes mentioned above, the reaction occurring at both the 5- and at the 4-position. © 2000 Published by
Elsevier Science Ltd. All rights reserved.

One decade ago, we reported the metalation and subsequent transformation oftert-butylbenzene and
related ‘spiny’ hydrocarbons.1 However, yields exceeding 50%, as reported,1 proved to be difficultly
reproducible. As it turned out, satisfactory yields can be achieved only when the substrate and the
superbasic mixed-metal reagent (LIC–KOR)2,3 are employed in the 1.5–2.0 M range (see Fig. 1).

Fig. 1. Consecutive reaction of 1,3-bis(tert-butyl)benzene with butyllithium potassiumtert-butoxide (suspension in hexanes)
and dry ice: yields of isolated 3,5-bis(tert-butyl)benzoic acid as a function of the metalation time (t) and concentration
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Employing a high-concentration (1.5 M) protocol, it was possible for the first time to attack a
positionortho to a bulkytert-butyl group. When a suspension of potassiumtert-butoxide in cyclohexane
containing equivalent amounts of butyllithium and 1,4-di(tert-butyl)benzene was stirred for 25 h at 25°C
before being poured on dry ice and neutralized, 10% of 2,5-di(tert-butyl)benzoic acid (1) were formed.
The yield raised to 24% when the reaction was conducted at 75°C under otherwise identical conditions.

In view of the difficulties to prepare 1,2-di(tert-butyl)benzene,4 the readily accessible 1,1,3,3-
tetramethylindane5 and 1,1,2,2,3,3-hexamethylindane6 were selected as surrogates. Superbase promoted
metalation proceeded smoothly (24 h at 25°C in hexanes) and, after carboxylation, the 5-(1,1,3,3-
tetramethyl)indanecarboxylic acid (2) and the 5-(1,1,2,2,3,3)-hexamethylindane carboxylic acid (3), were
isolated in 51 and 55% yield, respectively.

The oxa-analogous 1,1,3,3-tetramethyl-1,3-dihydroisobenzofuran7 afforded two regioisomers
side by side.8 The main product (23%) was the already described 5-(1,1,3,3-tetramethyl-
1,3-dihydroisobenzofuran)carboxylic acid (4a).9 The minor isomer 4-(1,1,3,3-tetramethyl-1,3-
dihydroisobenzofuran)carboxylic acid (4b; 12%) appears to have been previously overlooked.

Competition experiments1,10were carried out to quantify the substituent effects on the metalation rates
(see Tables 1 and 2).11 All ‘spiny’ hydrocarbons were found to react more slowly than benzene itself,
the sterically shielded 1,4-di(tert-butyl)benzene being clearly the most inert substrate. As the partial rate
factors of simple substrates (e.g.,tert-butylbenzene, see Table 1, or 1-methyl-1-phenylcyclopropane1)
reveal, alkyl substituents seem to exert a slightly stronger rate retarding effect when located at themeta
rather than theparaposition relative to the deprotonation site.

In comparison with the 1,1,3,3-tetramethylindane case, the additional pair of geminal methyl groups
present in 1,1,2,2,3,3-hexamethylindane impedes the metalation of the latter substrate by a factor of
two (see Table 2). In contrast, 1,1,3,3-tetramethyl-1,3-dihydroisobenzofuran reacts with the superbase
three times faster than the oxygen-free reference compound (Table 2). If one breaks down this overall
effect according to the competing regioisomeric channels, metalation at the positions 5 and 4 proves
to be accelerated twofold and at least 20-fold, respectively. At present, it is not clear whether the
inductive electron-withdrawing effect of the heteroatom is transmitted through the�-bonded skeleton
or by polarization of the�-cloud of the aromatic electron sextet. As molecular models show, a direct
coordination of the oxygen atom to the proton abstracting reagent can be ruled out for reasons of
congestion. Therefore, no analogy should be drawn to theortho-lithiation of methyl triphenylmethyl
ether12 which in a sequence of subsequent steps is converted into 9-phenyl-9-fluorenyllithium while
1,1,1-triphenylethane is totally unreactive under identical conditions.
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Table 1
Metalation of tert-alkyl substituted benzenes by means of the LIC–KOR superbase in hexanes
(HEX) or tetrahydrofuran (THF): relative rates and partial rate factors[a] as assessed by competition

experiments

Table 2
Metalation and subsequent carboxylation of 1,1,3,3-tetramethylindane, 1,1,2,2,3,3-hexamethylindane
and 1,1,3,3-tetramethyl-1,3-dihydroisobenzofuran by means of the LIC–KOR superbase: relative rates

and partial rate factors[a] as assessed by competition experiments
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